
Transaction Processing Architecture 
April 19, 2017

“Sawtooth Lake” (CC BY 2.0) by brianteutsch



Modular Design
• Sawtooth Lake is a platform for developing distributed ledgers. 

• Takes no position on fundamental types/data structures (no assets or currency 
defined in the core). 

• Clearly defined interfaces for pluggable consensus and transaction processing 
allow for different configurations for different use cases, for example: 

• Permissioned network with domain-specific non-Turing complete 
execution support via a business rules transaction processor. 

• Open network with a combination of ‘static’ transaction formats and on-
chain bytecode using a ‘virtual machine’ implementation (like EVM).



0.8 Architecture
• The core is responsible for: 

• Message handling 
• Block publishing/validation 
• Consensus 
• Global state management 

• Pluggable consensus 

• Parallel Transaction Processing



Transaction Processing
• The Transaction Processor interface defined by the Sawtooth Lake SDK is 

very lightweight. 

• A transaction is executed in a context which is built by the validator. The 
context governs the starting version of state, and the state addresses which 
will be read from and written to as part of the transaction’s execution. 

• The validator calls the apply() method of the transaction handler and 
provides the context and the opaque payload of the transaction. 

• The Transaction Processor is responsible for deserializing the payload and 
performing the necessary state transitions through get() and set() calls 
against the context. 

• If the Transaction Processor attempts to reference state addresses outside 
of the declared inputs and outputs, an error will be returned by the validator. 

• The validator is responsible for managing the isolation of transaction 
execution via explicit dependency ordering and declared inputs and 
outputs and for aggregating the contexts into block-level state transitions for 
publishing (state root hash calculation) and verification/application.



SDKs
• Sawtooth Lake SDKs provide lightweight interfaces for writing 

standalone Transaction Processors. 
• The SDKs provide the 0mq and protobuf message definitions and 

framework to allow the new Transaction Processor to register with 
the validator and receive requests to process transactions.





Key Factors in Transaction Processor Design

• Deterministic across time and space 

• Transaction payload format and serialization/deserialization 

• Radix address encoding within state namespace 

• Data schema and serialization/deserialization for information stored 
at addresses



Get Involved
https://github.com/hyperledger/sawtooth-core

https://chat.hyperledger.org/channel/sawtoothlake 

https://intelledger.github.io/0.8/

https://github.com/hyperledger/sawtooth-core
https://chat.hyperledger.org/channel/sawtoothlake
https://intelledger.github.io/0.8/

